Atlantis Arisen
April 16, 2024, 11:15:11 am
Welcome, Guest. Please login or register.

Login with username, password and session length
News: 'Modern' Behavior Began 40,000 Years Ago In Africa, Evidence Suggests
http://www.sciencedaily.com/releases/1998/07/980707073901.htm
 
  Home Help Search Arcade Links Staff List Login Register  

Steel

Pages: [1]   Go Down
  Print  
Author Topic: Steel  (Read 669 times)
0 Members and 1 Guest are viewing this topic.
Victoria Liss
Administrator
Atlantean Hero
*****
Posts: 124



View Profile
« on: November 18, 2010, 01:23:17 pm »

When steels with less than 0.8% carbon, known as a hypoeutectoid steel, are cooled from an austenitic phase the mixture attempts to revert to the ferrite phase, resulting in an excess of carbon. One way for carbon to leave the austenite is for cementite to precipitate out of the mix, leaving behind iron that is pure enough to take the form of ferrite, resulting in a cementite-ferrite mixture. Cementite is a hard and brittle intermetallic compound with the chemical formula of Fe3C. At the eutectoid, 0.8% carbon, the cooled structure takes the form of pearlite, named after its resemblance to mother of pearl. For steels that have more than 0.8% carbon the cooled structure takes the form of pearlite and cementite.[9]

Perhaps the most important polymorphic form is martensite, a metastable phase which is significantly stronger than other steel phases. When the steel is in an austenitic phase and then quenched it forms into martensite, because the atoms "freeze" in place when the cell structure changes from FCC to BCC. Depending on the carbon content the martensitic phase takes different forms. Below approximately 0.2% carbon it takes an α ferrite BCC crystal form, but higher carbon contents take a body-centered tetragonal (BCT) structure. There is no thermal activation energy for the transformation from austenite to martensite. Moreover, there is no compositional change so the atoms generally retain their same neighbors.[10]

Martensite has a lower density than austenite does, so that transformation between them results in a change of volume. In this case, expansion occurs. Internal stresses from this expansion generally take the form of compression on the crystals of martensite and tension on the remaining ferrite, with a fair amount of shear on both constituents. If quenching is done improperly, the internal stresses can cause a part to shatter as it cools. At the very least, they cause internal work hardening and other microscopic imperfections. It is common for quench cracks to form when water quenched, although they may not always be visible.[11]

[edit] Heat treatment
Main article: Heat treating carbon steel
There are many types of heat treating processes available to steel. The most common are annealing and quenching and tempering. Annealing is the process of heating the steel to a sufficiently high temperature to soften it. This process occurs through three phases: recovery, recrystallization, and grain growth. The temperature required to anneal steel depends on the type of annealing and the constituents of the alloy.[12]

Quenching and tempering first involves heating the steel to the austenite phase, then quenching it in water or oil. This rapid cooling results in a hard and brittle martensitic structure.[10] The steel is then tempered, which is just a specialized type of annealing. In this application the annealing (tempering) process transforms some of the martensite into cementite or spheroidite to reduce internal stresses and defects, which ultimately results in a more ductile and fracture-resistant metal.[13]

Report Spam   Logged
Pages: [1]   Go Up
  Print  
 
Jump to:  

Bookmark this site! | Upgrade This Forum
SMF For Free - Create your own Forum

Powered by SMF | SMF © 2016, Simple Machines
Privacy Policy